
Building Production‑Ready
AI Agents with FastAPI,
Pydantic‑AI & MCP 🚀

Petros Savvakis

whoami_
** Lead Software Engineer @ Ethniki Asfalistiki — Tech Thirsty…
 shipping cloud-native FastAPI + K8s micro-services

** MSc Robotics & Electrical Engineering; ex-PCB hacker-designer

** OSS tinkerer & blogger — respectablyAI, PeepDB, writing about tech at
petrostechchronicles.com

why?

WHY DO WE NEED AI AGENTS IN GENERAL?

Agents???

what is AI Agent?

AgentGOAL!!! Tools /APIs or
ENV

Feedback Loop
PID like concept

🎯

Agent definition:

● Execute workflows autonomously
● Make decisions based on context
● Maintain conversation history
● Can use external tools

Picture an AI assistant that retains context and executes
actions—that’s the essence of an agent.

For Agent to work we need:

MCP(Model Context Protocol)

What is MCP?

● Open protocol for AI ↔ tool handshakes
(HTTP + JSON/SSE)

● Secure (partially) - using (OAuth 2 + RBAC)

● Language/model agnostic clients (Python,
JS, CLI)

● Interoperability (Universal Adapter)
Ready-made adapters for GitLab, Confluence,
Jira, Slack, DBs

why do we need MCP(in detail)?

MCP SERVERAgent

JSON/SSE

 (OAuth 2.1)

Response stream

MCP Server-tools can be...

MCP Server

Tools

Resources

Prompts

Samplings

Tools (“get_weather”):

Resources (project file):

Prompts (re-usable code_review):

Samplings (server-initiated completion):

MCP server transport options🚦
Transport Best-fit use

case
How it works Extra notes

stdio (local /
“spawn & pipe”)

When the client can
launch the server as a

subprocess on the same
machine (e.g., VSCode,
Cursor, local CLI tools).

JSON-RPC messages flow
over stdin → stdout; each

message is
newline-delimited UTF-8.

Easiest to support; every
MCP client should

implement it.

Server-Sent
Events (SSE)

Legacy remote transport
for long-running cloud

servers where you want
true streaming but haven’t

upgraded yet.

Two HTTP endpoints:
POST for requests,

long-lived GET that returns
Content-Type:

text/event-stream for
streaming responses and

server-initiated
notifications.

Still widely supported, but
being phased out in favor

of Streamable HTTP.

Streamable
HTTP

Recommended remote
transport for new

deployments (Cloudflare
Workers, FastAPI, etc.).

Single HTTP endpoint that
supports:

• POST for client → server
messages

• Optional SSE stream
(same URL) for server →

client messages.

Supersedes SSE; supports
resumable streams and

simplifies firewall / CORS
setup.

Fusing Agents with MCP

Agent

Agent with MCP Communication

Agent

MCP

Tools

Tools

Tools

Agent X performing some
specific Action e.g.
Orchestrator/Executor

MCP

MCP

We also need A2A… for complex pipelines

Agent

A2A

Agent

MCP

Tools

Tools

Tools

What is A2A(Agent2Agent) ?
● Open Agent-to-Agent protocol for direct communication, task delegation &

real-time result streaming between heterogeneous AI agents (HTTP +
JSON-RPC/SSE)

● Agents publish a discoverable “Agent Card” (ID, skills, endpoints) so peers can
auto-discover and negotiate work

● Shared security model OAuth 2 / scoped keys with signed messages—to keep
cross-vendor traffic safe and auditable

● Enables multi-agent “swarming” workflows that complement MCP’s
agent-to-tool layer (plan → execute → verify) without a central orchestrator

Why do we need A2A to connect multiple
Agents?

● Secure Collaboration
● Task and State Management between Agents
● UX Negotiation
● Capability Discovery

Clarifying why we need each protocol…
Feature / Protocol MCP A2A

Focus Area Context Sharing Peer Task Collaboration

Type Context Protocol Communication Protocol

Best Use Case Multi-model memory sharing Decentralized agent operations

Scalability High with MCP servers High in P2P networks

Complexity High Moderate

Standardization Evolving Emerging
(more early stage than MCP)

Security Layers Context visibility control
(poor performance security wise)

Authenticated exchanges

Fusing Agents with MCP + A2A

Agent

A2A

We want to be
here!

Agentic AI - Convoluted

DATA

Configs

 Agentic AI

Agents

CLAUDE

GPT

CLAUDE

.....

MCP

Tools Exposed

MCP + A2A multi-Agent Communication Pipeline

Agent

MCP

Tools

Tools

Agent

Tools

Tools

MCP

Agent X performing some
specific Action e.g.

Orchestrator/Executor

Agent Z performing
some specific Action
based on the previous
results e.g. triggering
Automations/CI/CD

Agent

A2A

A2A

Agent Y performing
some specific Action
e.g. Internet Search or
Private Data Research

Pilot Use Case

Agent

MCP

Tools

Tools

Agent

Tools

Tools

MCP

Agent X
Orchestrator/Router

Agent Z Research
Synthesizer

Agent

A2A

A2A

Agent Y
Quant & Prices

Brave MCP
(web search)

HackerNews
MCP (tech/news

signal)

Tools

MCP

Market Data MCP
(e.g., Yahoo/Polygon)

Filesystem MCP
(personal knowledge
base & past briefs)

EDGAR/Filings MCP
(10-Q/8-K/press

releases)

What we hope to achieve…

Agent

Action 1

Action 2

FINAL
GOAL

N Action N

Action N Action N

Our
Request

Agent

In reality…

In reality…

Source: https://github.com/humanlayer/12-factor-agents/blob/main/img/027-agent-loop-animation.gif

Now that we have an idea about
all that…

Let’s build something more plausible…

Each small agent handles a focused task (e.g. summarisation or
classification), making the overall system easier to debug and scale

● Structured tool calls & schemas
● Own your prompts & context
● Deterministic control flow & logging
● Human‑in‑the‑loop triggers

FastAPI Explanation!

FastAPI is a modern, fast (high‑performance) web framework for building APIs in
Python.

It’s built on Starlette and Pydantic, so you get high speed and automatic validation

Key Features include:

● Very high performance (comparable to Node.js and Go or at least trying😅)
● Standards‑based: uses OpenAPI and JSON Schema for automatic interactive docs
● Fast to code with editor autocompletion and fewer bugs

Let’s now pair it with Pydantic AI 🥳

What is Pydantic AI?

● Pydantic AI is a Python agent framework that brings the “FastAPI
feeling” (type-safety, great DX, automatic validation) to Gen-AI app
development 

● Built and maintained by the core Pydantic team the same validation
layer trusted by OpenAI, Anthropic, LangChain, etc. 

Why bother using it?

● Structured output ⇄ LLM flexibility: Define a Pydantic model → Pydantic
AI guides the LLM to emit JSON that matches it → auto-parses &
validates every run (no regex hacks).

● Model-agnostic: Works with OpenAI, Anthropic, Gemini, DeepSeek,
Ollama, Groq, Cohere, Mistral—and you can plug in any new model with
a tiny adapter 

● First-class observability: Plugs straight into Pydantic Logfire for real-time
debugging and usage metrics 

● Type-safe & async-friendly: Static type-checkers catch mistakes; supports
synchronous & asynchronous runs out-of-the-box.

SURVEY TIME!!!
Let’s see what knowledge the audience has about Agents🔥

{LET’S START
CODING
REAL
EXAMPLES... {

In practice though… it takes a whole stack
to deploy Production AI systems…

When Do Agents Make Sense in Production?

📈 Value given right

📈 Probability of Success
(as it is a nonlinear system)

📉 Cost of getting the
wrong answer

=> P * V - (1 - P) * C >
💰

Source: 3 ingredients for building reliable enterprise agents - Harrison Chase, LangChain/LangGraph

Production-Ready AI Agent Stack

Layer 4: Infrastructure & Security 🔒
Layer 3: Communication Layer (A2A) 🔄
Layer 2: Tool Integration Layer (MCP) ⚙
Layer 1: Agent Intelligence Core 🧠

Layer 1: Agent Intelligence Core 🧠
● Deterministic I/O: Pydantic schemas for inputs/outputs; strict parsing & coercion.
● Memory:

○ short-term (context window mgmt),
○ long-term (pgvector/Weaviate/Pinecone),
○ entity memory; TTL + purge jobs.

● Prompt mgmt: versioned prompts, templating, A/B variants, feature flags.
● Tool calling: constrained functions with JSON schema; guardrail validation before/after

calls.
● Reasoning control: max tool-call depth, recursion caps, timeouts, circuit breakers.
● Fallbacks: model routing (primary/backup), offline rules for degraded mode.
● Caching: semantic + input hash caching (Redis) with eviction policy.
● Evals: automated regression evals (hallucination, grounding, toxicity, task success);

golden sets.
● Safety filters: PII redaction, jailbreak/abuse detection, allow/deny tool lists per role.
● Cost/latency control: token budgeter, streaming responses, batching.
● Observability hooks: trace every step (LangSmith/OpenTelemetry), prompt/response

snapshots, cost meters.

Layer 2: Tool Integration Layer (MCP) ⚙
● MCP contracts: typed tool specs, idempotent operations, clear error codes.
● Auth to tools: per-tool secrets, token scoping, rotation, least privilege.
● Rate limiting & backoff: retry policies, hedged requests, circuit breakers per tool.
● Data guards: input validation, output sanitization, schema checks; content provenance

tags.
● Timeouts: per-tool SLAs; cancel + cleanup on over-time.
● Streaming & chunking: large payload handling (multipart, resumable, pagination).
● Sandboxing: FS/network isolation for Filesystem/Code tools; allowlisted paths/hosts.
● Auditability: tool call logs (who/what/when/why), request/response hashes.
● Versioning: pin tool server versions; backward-compatible changes; canary new tools.
● Local vs remote: health checks, readiness probes; failover to alternate MCP endpoint.

Layer 3: Communication Layer (A2A)

● Protocol: explicit agent contracts (roles, capabilities, message schema, step limits).
● Routing: planner/router agent with deterministic policy + heuristics; loop detection.
● State shared-nothing: pass minimal, signed state; avoid hidden globals.
● Delivery guarantees: at-least-once via queue (NATS/Kafka/RabbitMQ) with dedup keys.
● Idempotency keys: for replays/retries across agents.
● Traceability: correlated request IDs across agents; OpenTelemetry spans.
● Access control: per-agent RBAC/ABAC; capability tokens for allowed tools.
● Escalation paths: human-in-the-loop handoff; stop/go approvals for risky actions.
● Cost/latency budgets: per-conversation ceilings; kill-switch when exceeded.
● Testing: multi-agent simulations, chaos tests (drop/slow/duplicate messages).

Layer 4: Infrastructure & Security 🔒
● Runtime: Docker/Compose/K8s with resource limits, HPA, node affinity (CPU/GPU).
● Networking: mTLS between services, service mesh (Linkerd/Istio) for retries/CB.
● Secrets: Vault/Secrets Manager, rotation, per-env scopes, no secrets in images.
● Storage: Postgres for state, object store for artifacts, vector DB with backups & PITR.
● CI/CD: supply-chain security (SBOM, image signing, vuln scans), canary + blue/green.
● Monitoring: metrics (p95 latency, token/s, cost/s, tool error rate), logs, alerts with SLOs.
● Data governance: PII cataloging, retention policies, delete/trace requests, encryption at

rest.
● Compliance: audit logs, DPIA where needed, data residency, DLP on egress.
● Resilience: multi-AZ, backup/restore drills, dependency SLOs, graceful degradation.
● Cost mgmt: per-tenant metering, anomaly detection, budgets & alerts.

Core Production Building Blocks
UI Interface Chat UI (Slack/Teams) Web/Mobile Interface API Gateway

(Kong, Tyk, NGINX/Envoy, Traefik, Cloudflare Gateway)

Orchestration FastAPI LangChain - LangServe Pydantic-AI
(MCP client adapters)

Custom Orchestrator
(Celery/RQ/Temporal,HTTP/
WebSocket routers; gRPC(Protobuf))

Prompt Management
Prompt Construction
(Pydantic-AI tools, Guidance,
Instructor, LMQL, DSPy)

Versioning
(Git, DVC for prompt artifacts,
LangSmith runs)

Chat History
(Postgres (JSONB), SQLite,
MongoDB, RedisJSON)

Context Management
(LlamaIndex, Haystack,
LangChain RAG)

Memory & Tools
Short/Long-term Memory
(mem0, LangGraph state
stores)

Vector DBs
(pgvector (Postgres), Qdrant,
Weaviate,, Pinecone, Chroma)

Redis
(Redis Stack, Redis Streams
for events, redis-rate-limit)

Prompt Cache
(PTCache, Redis/SQLite LRU,
LiteLLM cache middleware)

Communication Layer
(A2A)

Protocol Contracts
(MCP, JSON Schema,
gRPC/Protobuf, Avro (Kafka))

Routing & Delivery
(NATS, Kafka, RabbitMQ,
Celery/Redis)

RBAC/ABAC
(Keycloak, Auth0, Ory
(Kratos/Keto), JWT/OIDC)

Observability
(OpenTelemetry, Logfire
SDK,Prometheus, Grafana)

Tool Integration Layer
(MCP)

Typed Contracts
(MCP SDKs, Pydantic models)

Sandboxing (E2B sandboxes, Firecracker,
Docker seccomp/AppArmor)

Audit Logs
(ELK (Filebeat/Logstash/ES/Kibana),
Grafana Loki, CloudTrail)

Open Source Models
(Registries - Hugging Face)

OpenAI Anthropic Llama DeepSeek Mistral

Infrastructure &
Security

Docker/K8s mTLS Networking Secrets Manager Monitoring/Alerts CI/CD Security

Case 1: Personal Usage (Solo / Homelab) 󰞵
Resources & Models

● 🖥 Hardware: 1× consumer GPU (RTX 3090/4090, 16–24 GB VRAM) with strong CPU
● 🧠 Models: LLaMA-2 7B, Mistral 7B, Gemma/CodeGemma (4–30B)
● 💾 Storage: Local SSDs, model weights (4–20 GB each)
● 🗄 Data: SQLite/Postgres for RAG over personal docs

Stack (Minimal)
● FastAPI + Pydantic-AI + MCP servers (Filesystem, Web Search)
● Docker/Proxmox for self-hosting

Use Cases
● Personal coding/chat assistant/news aggregator
● RAG over PDFs, notes, configs
● Experimental agents

Case 2: Small Team (5–10 Developers)󰞵󰞵
Resources & Models

● ⚖ Infra: Shared GPU workstation (24–48 GB VRAM) or hybrid (local + spot cloud GPU)
● 🧠 Models: LLaMA-2 13B, Mixtral 8×7B (quantized for VRAM fit)
● 💾 Storage: Central DB (Postgres/Mongo), model weights (20–40 GB)
● 🗄 Vector DB for docs (e.g. Chroma, Weaviate)

Stack (Minimal)
● FastAPI services in Docker / Compose
● vLLM or Hugging Face TGI for serving
● Observability: Prometheus + Grafana / ELK
● RBAC + secrets mgmt (Vault, env vars)

Use Cases
● Internal bots (docs search, workflow assistants)
● Team-wide RAG over shared knowledge

CI/CD integrated agents

Case 3: Large Teams (>10, Enterprise-Grade)󰞵󰞵󰞵
Resources & Models

● ☁ Infra: Cloud GPU clusters (A100/H100, CoreWeave, GCP, Azure)
● 🧠 Models: LLaMA-2 70B, Mixtral 8×7B, domain-fine-tuned models
● 💾 Storage: Distributed (S3, Snowflake, BigQuery), multi-TB vector DB
● 🌐 Networking: NVLink/InfiniBand for multi-GPU inference
● The list goes on….

Stack
● Multi-agent orchestration (MCP, LangGraph, Azure Agent Service)
● K8s + CI/CD pipelines (staging → prod)
● Observability: Datadog, OpenTelemetry, Arize AI
● Security: Enterprise RBAC/ABAC, compliance (SOC2, GDPR)
● The list goes on….

Use Cases
● Customer support copilots
● Financial/data QA agents
● Multi-modal assistants across business units

Source: Those resources are examples from real deployment use cases such as (Brave, Perplexity, Intuit, IBM, etc.).

Key Takeaways! 🚀

Agent
= context + actions + tools

= plug-and-play interoperability
MCP

= type-safe scaffolding for agents

= production-grade APIs & orchestration

Stack ≠ LLMs -> Infra + Monitoring + Security…

Let’s see the survey Insights
📊

Thank you!!!

Feel free to connect with me at Ln:

or feel free to visit my blog:

Or even better come and chat with
me!!! 😃

Icons

Agent

MCP

Tools

A2A

A2AFeedback Loop
PID like concept

